

 Abstract—A typical hardware system can be segmented into

components that each define a specific task. Components could be

divided among a design team for creation, acquired from another

source in the form of legacy work, or an IP core. A finalized

system could be composed of several heterogeneous components.

Proper integration of these components can often be complex and

time consuming for designers. Available tools to aid in rapid

hardware design often lack in this area and require confusing

pre-compilation procedures. Previous work has been done to

create a compiler, called flowpaths, for converting high-level

stack-based languages (e.g. Java) to VHDL for use on an FPGA

or ASIC. Introduced in this paper is an extension to the flowpaths

compiler to allow easier integration of system-components using

object-oriented methodologies. System-components can be

described by high-level Java classes with methods for interactions

with components. These methods are filled with the custom

system-components during generation, such that flowpaths acts as

the glue logic between separate components. In comparison to

handwritten component interconnections, a design integrated

with flowpaths shows a decrease in implementation time and

design complexity.

Index Terms—Field Programmable Gate Arrays, Program

Compilers, Embedded Systems, Glue Logic

I. INTRODUCTION

ften times, large hardware systems are composed using a

combination of several heterogeneous components.

Usually these components are legacy-based, created by

different designers, or acquired from a vendor in the form of

an IP core. Integration of several such components into a

cohesive system is often referred to as “glue logic”. Design of

a system using a collection of modules such as these can be

quite a difficult task. This can become very time consuming,

even for a skilled computer engineer. The need arises for a

tool to add flexibility to the design and implementation phases

of a multi-component system.
Tools have been created to allow a hardware designer

flexibility of design through the use of high-level languages.

Examples of such tools include Handel-C and flowpaths; the

latter being designed by us. Flowpaths is an architecture

described in HDL that can be generated using a stack-based

language, rather than a variable/register language which often

introduces large fan-out and delay when implemented in

hardware. Such stack-based languages include Java bytecode,

Common Interface Language (CIL), and Forth. Currently,

Manuscript received March 31, 2011.

Darrin M. Hanna, Bryant Jones, Lincoln Lorenz, and Mark Bowers are

with the School of Engineering and Computer Science at Oakland University

in Rochester, MI (dmhanna@oakland.edu).

flowpaths are implemented using Java bytecode, and produce

circuits described in VHDL. However, this could be extended

to other languages, and different HDLs such as Verilog.

Flowpaths are further described in [1, 2]. Table I shows a

summary of benchmark results comparing flowpaths to a

jStamp microprocessor that natively executes Java bytecode.

Time Energy
Experiment Method

ms ratio mW·ms ratio

JStamp 2.7 1 319 1
Mandelbrot

Flowpaths 0.065 0.024 15.55 0.048

JStamp 237.6 1 44669 1
FFT

Flowpaths 3.84 0.016 714 0.015

JStamp 2800.0 1 526,400 1
Linpack

Flowpaths 122.2 0.043 34,065 0.064

Table I. Flowpaths versus JStamp performance

These results show improvements in nearly all areas when

compared to another embedded system. More results can be

found in [1].
These tools allow users to design in a high-level language.

Handel-C, for example, uses a subset of C with hardware-

specific extensions, while flowpaths uses stack-based

languages. Our implementation in Java makes no modification

to the standard Java language. On the other hand, Handel-C

requires the knowledge of a modified language, allows for

design in a high-level language resulting in hardware

descriptions that are not practical to modify at the HDL level,

and often generates less efficient hardware as described in [2,

3].
Flexible integration of a system is possible in a number of

ways. Aside from doing it by hand, tools offer simpler

solutions to this problem. Some tools like Handel-C require

the pre-compilation of a module for use in a greater system.

This can often be confusing and requires many steps.

Flowpaths, as we will show, allows for easy integration of

custom hardware components into a system through the use of

object-oriented design within Java.
This paper describes the flexibility of the flowpath compiler

for use in a hardware system. Section 2 outlines how custom

VHDL modules can be integrated into an existing flowpath

design. Section 3 describes a Mandelbrot fractal explorer using

flowpaths to integrate legacy and custom VHDL modules

including drivers for VGA, a PS/2 mouse, and user I/O.

Section 4 elaborates further with an example of a full robotics

system integrated together using flowpaths with custom

hardware for GPS, Light Detection and Ranging (LIDAR), a

motor controller, a camera with an image processing pipeline,

Flexible Embedded System Design Using

Flowpaths

Darrin M. Hanna, Bryant Jones, Lincoln Lorenz, and Mark Bowers

O

and an Inertial Measurement Unit (IMU). The paper closes by

providing concluding remarks and future work.

II. OBJECT-ORIENTED SYSTEM DESIGN

Flowpaths have the flexibility to utilize custom hand-crafted

VHDL components for use in generating hardware. This gives

a computer engineer several options for design of a hardware

system. Examples of where this can be used include: replacing

a complex portion of a generated flowpath with an optimized

custom component for greater efficiency, or the integration of

several modules with a flowpath as the interconnection fabric.

This is described by Fig 1.

Legacy, custom, or IP core components, can be incorporated

easily into an algorithm for an embedded system using

flowpaths. Each component can be described using object-

oriented methodologies. Components are characterized as

objects of the system, with its interactions as functions of that

object. This can be easily described in Java by creating a class

for each component. Within this class, a method must be made

for each function of the component. Alternatively, since a

component’s interface could be described by a single method,

one class could be created with a method for each component.

Since the generated flowpath for a method will contain a

custom component, the Java method can be left empty. The

only parameters that need to be established for a method are

the inputs and outputs. These will correspond to stack inputs

and outputs of a datapath. The generated flowpath will handle

parameter passing into and out of the component. The only

change needed to adapt the corresponding hardware

component for use in the flowpath, is to make the component

conform to a standard operation interface. This interface

consists of the changing execution stack (StackIn and

StackOut buses) and propagation signals (enable-in and done-

out).
Events are usually handled in an embedded system with one

of two methods; polling or interrupts. Flowpaths does not

currently support the use of interrupts, and therefore handles

events using polling. A main execution loop can be created, as

in most embedded systems, to allow the generated flowpath

logic to interact with the components. When an event occurs

within a component it must be registered until the next time it

is polled. Once that component is polled again, the event will

be handled and reset. Examples given in this paper use this

polling method.

III. AN EMBEDDED SYSTEM FOR EXPLORING THE

MANDELBROT SET

A complete Mandelbrot explorer system was implemented

using the flowpaths compiler. The Mandelbrot set is a fractal

image produced by iterating a quadratic polynomial across

points in the complex plane [5]. The system starts at an initial

image of the Mandelbrot set, and allows the user to zoom

further into a desired portion of the set, recalculating the image

and yielding more and more detail. This zooming behavior is

shown in Fig 2.

A VGA driver is used for displaying the Mandelbrot fractal.

 A PS/2 mouse driver is used for zooming into and out of the

fractal. Various calculation parameters are set via switches

and buttons using a handwritten component. The VGA and

mouse drivers are legacy components. The Mandelbrot

calculation core consists of two parallel flowpaths which were

generated from a Java algorithm. Each of these components is

integrated easily using the object-oriented method presented in

this paper.

 A class was created containing methods that describe the

interface to the existing components. A single method was

created for each component. Methods called PollMouse,

PollSwitches, MandelbrotCalc, and PlotPixel were created.

These methods describe the inputs and outputs of the

components. The PlotPixel and PollMouse methods are shown

as examples in Listing 1.

Fig 1. Overview of flowpath component integration

Fig 2. Example Mandelbrot fractal zoom sequence

Listing 1. PlotPixel and PollMouse interface methods

The functional interface of these components is shown in

Fig. 3. The user interface loop continuously polls the status of

the mouse and switches using the PollMouse and PollSwitches

methods, respectively. Momentary events (button presses,

mouse clicks) are captured within these methods and handled

when the device is polled again.

 Mouse clicks trigger the frame rendering loop. This loop

recalculates the image based on user input. The calculation is

performed in the MandelbrotCalc function. This function

represents a component consisting of two instances of a

previously generated Mandelbrot flowpath, combined in a

manner such that they operate upon two Mandelbrot points in

parallel. Each instance performs an iterative calculation upon a

given point in the Mandelbrot set. The number of iterations

taken corresponds to the appropriate pixel color, which is then

written to video memory with the PlotPixel function. This

function writes directly to VRAM, by simply wiring the

appropriate stack elements to the memory’s address and data

lines, and the operation enable pulse to the memory’s write

enable.
 Implementing the frame rendering loop in VHDL would

require a complex state machine and take a significant amount

of time to implement. The Java version, on the other hand,

merely consists of two nested for loops and two function-calls,

which can be created very quickly. A comparison was

performed on several implementations of a Mandelbrot

system. The results are shown in Table II.

The Mandelbrot explorer system was developed using

several different methods. The systems were subjected to a

standard benchmark using the same calculation parameters to

produce an image of the Mandelbrot set. The flowpath-

generated glue logic had a slight impact on the draw time, but

was developed much quicker. The flowpath-generated

calculation core yielded performance half as fast, and utilized

twice as much logic as a handwritten core, but again, was

created in significantly less time.

IV. ROBOTIC SYSTEM INTEGRATION

An FPGA-based system for an autonomous ground robot is

currently being developed using flowpaths to implement

intelligent algorithms that depend on several components. In

robotic systems, there are generally multiple sensors, sensor

processing, intelligent processing algorithms, and signal

conditioning components, among others. Using a high-level

object-oriented programming language to create a robotics

control algorithm, streamlines the design of a robotic system.

 The ability to generate special-purpose hardware from a high-

level Java description makes it practical to implement such a

system on an FPGA. The easy description allows for future

changes to the system to be made quite easily.
The system is based on the simple sense-think-act loop

model, where a robot acquires the latest sensor data, makes a

decision based on its current state estimate, and sends control

signals to act upon its decision. Sensors and other modules are

connected to the FPGA through external I/O pins. Each

custom component polls its sensor and reads data at the

interface update rate. Handwritten VHDL components have

been developed for interfacing to a GPS sensor, a LIDAR

sensor, and motor controller. Other components such as a

camera interface, an image processing pipeline, and an IMU

interface are in development. Fig 5 illustrates the interfaces

and glue logic that will be used to integrate the system.

Fig 3. Overview of the Mandelbrot explorer flowpath

Calc

 Core
Glue

Logic

Logic

Elements
Consumed

Draw

Time
(ms)

Draw

Time
(ratio)

Approx
Dev.

Time

Flowpath
32-bit Flowpath 15,772

(47%) 970 1.000 30 min

Flowpath
32-bit Manual 8,379

(25%) 860 0.886 3 hours

Manual
32-bit Manual 3,420

(10%) 414 0.426 1 Day

Table II. Relative performance of Mandelbrot implementations

 Individual classes were created to describe the functions of

the handwritten components. Each component class contains

the methods used to interface with that component and

additional helper methods.
 The motor controller component utilizes a built-in closed

loop control algorithm to control the motors’ speeds using

encoders for feedback. Its interface requires a system speed

and heading angle to compute the velocity for each motor. To

interface to the component, a Java class named

MotorController was created that contains a method called

sendCommand which takes speed and heading angle as

parameters.
 A GPS sensor is used for detecting the robot’s position on

the earth. The GPS component receives the latitude, longitude,

altitude, and status information from the GPS sensor. The

custom hardware handles all of the details of the interface to

the sensor including the parsing of the serial message. A Java

function, readData was created as an interface to the

component that reads the latest GPS sensor data. Normally, the

readData function would return the full GPS message in one

read, however, since the Java language limits the number of

return values of a function to one, a workaround is needed. It

accomplishes this by using an index to select which portion of

the data to read. In this way, the data can be read out serially

using a call to readData for each index. This presents another

obstacle since readData is called in four places. This normally

will generate four instances of the readData wrapper including

the handwritten hardware. This is redundant and makes

connection to an external interface unfeasible. To avoid this,

one wrapper file is created and a multiplexer is inserted to

control access to the custom hardware from the four different

locations. To provide a cleaner external interface, the GPS

data is compiled into a GPSMessage object. Using the method

readMessage, the GPSMessage passed to it will be populated

with the current data. The Java class which provides the

interface to the GPS sensor is shown in Listing 2.

To properly navigate the robot, environmental surroundings

need to be monitored constantly. A LIDAR and camera are

used for this task. The LIDAR operates by receiving laser

ranging data in a series of angle-referenced intensity bins

which are used to determine surrounding objects. These are

read through the Java wrapper method getIntensities and

added to a LIDAR message created in Java, much like the

GPSMessage. The camera, on the other hand, acts as the

robot’s eyes using an algorithm to detect objects in the robot’s

view. Its corresponding hardware component calculates a list

of objects described by their three dimensional location and

size. The interface to the camera component reads this list of

Fig 5. Object-oriented robot design

Listing 2. GPS interface

objects and combines them into a message containing an array

of objects.
 Furthermore, the robot must be conscious of its orientation

relative to the environment. An IMU is used for calculating the

robot’s relative position and system’s current motion. This

component receives orientation, velocity, and acceleration data

from the IMU. These data are returned from the component

using an interface wrapper, as with the other sensors.
 The full system can be pulled together using a sense-think-

act loop written in Java. Flowpath algorithms can be written on

top of the glue logic used to connect the components. The

model can be implemented using a main execution loop with

the divisions (sense, think, and act) called in order. Sensing

can be done by polling the individual sensor interfaces. On

each iteration of the loop, the sensors will be queried for data.

The robot will have detailed information about its environment

and its position relative to it. Using this sense data, the robot

will be able to effectively decide how to react. This can be

calculated based on its estimated current state and its goal.

Currently, response algorithms are unimplemented in this

design, however, the creation should be relatively

straightforward using Java. Once the system has chosen its

path, the robot can use the sendCommand interface of the

motor controller and the loop repeats.

V. CONCLUSION

This paper shows how the flowpaths compiler can be used

for flexible design of a hardware system which uses legacy,

custom, and IP core components. These can be integrated

easily into the flowpaths structure through the use of custom

classes in Java. By creating a class for custom components, an

inter-connection layer can be created in flowpaths to wire the

modules together. Using this technique allows for a time

savings in development with respect to integration of

components.
Two examples were given to demonstrate how using object-

oriented design and flowpaths reduced the time and

complexity in implementing embedded systems using legacy,

IP core, and custom components. A Mandelbrot fractal

example demonstrated the integration of a few components

with minimal complexity. Also, a real-life robotics system that

is underway was described including several components for

interfacing outside peripherals such as a camera, LIDAR, a

motor controller, an IMU, and a GPS module. Through these

examples, we have shown how flowpaths can be used to

quickly and easily generate efficient inter-connection logic for

a system using object-oriented principles.

VI. FUTURE WORK
Currently in Java, returning an object uses memory. To

alleviate this issue, a special reserved class could be

implemented to handle this without the use of memory. Work

also includes the implementation of automated mapping of

external signals into a generated flowpath. This includes the

ability to utilize pin resources on a specified FPGA to include

the proper connection from within a Java algorithm; similar to

the classes implemented by a jStamp embedded processor [6].

Creation of timing libraries, optimization techniques, and

process threading are also being explored as possible additions

to the flowpath compiler for use with flexible design control.

REFERENCES

1. D. M. Hanna, B. Jones, L. Lorenz, and M. Bowers, “Generating

Hardware from Java Using Self-Propagating Flowpaths,” Submitted to

the International Conference on Embedded Systems and Applications,

2011.

2. D. M. Hanna and R. E. Haskell, “Flowpaths: Compiling Stack-Based IR

to Hardware,” Microprocessors and Microsystems, vol. 30, pp. 125 -

136, 2006.

3. S. A. Edwards, "The Challenges of Hardware Synthesis from C-like

Languages," Proc. of Design Automation and Test in Europe (DATE),

Munich, Germany, 2005.

4. D. M. Hanna, M. Duchene, L. Kennedy, and B. Carpenter, "A Compiler

to Generate Hardware from Java Byte Codes for High Performance, Low

Energy Embedded Systems," The 2007 International Conference on

Engineering of Reconfigurable Systems and Algorithms, Las Vegas,

NV, June 25 - 28, 2007.

5. Benoît Mandelbrot, Fractal aspects of the iteration of z→λz(1-z) for

complex λ,z, Annals NY Acad. Sci. 357, 249/259

6. Systronix, “JStamp: Real-time Native Java Module,” 2003.

