
 

  

 Abstract—The performance of software executed on a 

microprocessor is adversely affected by the basic fetch-execute 

cycle. A further performance penalty results from the load-

execute-store paradigm associated with the use of local variables 

in most high-level languages. Implementing a software algorithm 

directly in hardware such as on an FPGA can alleviate these 

performance penalties. Such implementations are normally 

developed in a hardware description language such as VHDL or 

Verilog. Previous work has been completed to create a compiler 

for converting high-level stack-based languages to VHDL for use 

on an FPGA or ASIC. This allowed for special-purpose 

processors to be generated efficiently from high-level algorithms 

with minimal design time. Introduced in this paper is a significant 

optimization to the original flowpaths – we have completely 

eliminated the controller and modified all operations to control 

themselves. These new self-propagating flowpaths execute faster 

and are less resource intensive. Comparisons to previous 

examples show that the new design exhibits, on average, a 

decrease in execution time of 32%, operating frequencies of 1.6 

times higher, and a 33% decrease in power consumption. These 

flowpaths can be generated from languages with a stack-based 

intermediate representation including Java, C++, C#, and VB. 

 

Index Terms—Field Programmable Gate Arrays, Program 

Compilers, Embedded Systems, Object-oriented Design. 

I. INTRODUCTION 

ver the past ten years, field-programmable gate arrays 

(FPGAs) have become increasingly popular in the area of 

embedded systems. Due to lower costs and an increase in the 

resources available with lower-end models, FPGAs can be 

used in a wide range of applications. FPGAs have shown to be 

optimal for use in high-performance systems while reducing 

power consumption. 

A special-purpose processor (SPP) or custom digital circuit 

implemented on an FPGA is an ideal replacement for a 

microcontroller. Custom hardware such as SPPs can realize an 

algorithm more efficiently than a general-purpose 

microcontroller with load-execute-store overhead. However, 

SPPs increase in size, requiring more logic for larger 

algorithms, while a microcontroller can execute as large an 

algorithm as the program memory can hold using a fixed 

amount of logic. For others, a SPP on an FPGA can be used as 

a coprocessor to a microcontroller to help speed up particular 

functions or sub-procedures.  
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Designing a SPP is much more difficult than writing 

software in a high-level programming language to execute on a 

microcontroller. In order to design a SPP for a particular 

algorithm, a designer must learn how to develop hardware 

using a hardware description language such as VHDL or 

Verilog. Further, design of a SPP for a lengthy algorithm can 

be time consuming and requires a skilled computer engineer to 

do so efficiently.  

One common idea to decrease development time is to use a 

high-level language to develop hardware. Several techniques 

have been introduced that use this concept. Techniques for 

generating SPPs such as Handel-C, often require learning a 

new or significantly altered language, and have the bottleneck 

of often being register based as described in [1].  

Using the method introduced in [1, 3] SPPs can be 

generated from algorithms written in high-level stack-based 

intermediate representations (IR). This has the advantage of 

being generated from an unmodified high-level language. This 

is also more efficient than previous methods that use registers 

for each variable. The SPPs generated using this technique are 

called flowpaths. An embedded system can be designed and 

implemented rapidly using a high-level programming 

language.  

Our previous method generated flowpath SPPs with two 

basic components, a datapath and a state controller. An 

optimization of this architecture is to distribute the controller 

into each low-level operation to allow for smaller, more 

efficient designs that can operate at higher frequencies. 

In this paper, an optimization of the flowpaths architecture 

is introduced using a stateless self-propagating method that 

results in improvements for both speed and chip utilization. 

Outlined in Section 2 is the new stateless self-propagating 

architecture. Section 3 shows results using several 

benchmarking algorithms, comparing efficiency in an 

embedded system. Sections 4 and 5 describe additional 

benefits of flowpaths. The paper closes by providing 

concluding remarks and future work. 

II. SELF-PROPAGATING FLOWPATHS 

Software programs written in a stack-based language can be 

converted directly to circuits called flowpaths [3]. Stack-based 

programming languages inherently minimize the use of local 

variables. This is in contrast to other methods that have been 

developed for converting register-based code into circuits by 

converting each variable into a register and each assignment 

and access into a sequential operation. Those methods suffer 

from fan-out and routing issues and therefore operate at lower 

clock rates [1]. Several software-programming languages 

compile to an intermediate representation (IR) that is stack-
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based. Examples include the stack-based Java bytecode which 

is compiled from Java, and the Common Interface Language 

(CIL) that languages compatible with the .NET framework 

compile to, such as C++, C#, VB, and J#. Any of these 

languages could be represented similarly in hardware. The 

flowpaths compiler described here currently uses Java. The 

Java Virtual Machine (JVM) is a stack machine that runs on a 

microprocessor and executes Java bytecodes. Therefore, 

instead of executing bytecodes on a JVM, flowpaths 

completely eliminate the JVM by creating custom hardware 

that implements the program. Java bytecodes are translated to 

hardware operations, also known as OPs. A function-call 

within a Java program translates to a datapath which contains a 

series of connected OPs. Since flowpaths is IR-based, the 

generated hardware is represented in a human-readable way, 

unlike similar tools which often generate hardware that is 

obscure and difficult to modify. 

Self-propagating (SP) flowpaths uses a system of cascading 

enables to avoid the need for an overall state controller. The 

nature of the hardware generated is such that algorithms or 

parts of algorithms execute in sequence where one operation 

after another is active. In this scheme, no overall controller is 

necessary; no single, overarching entity requires knowledge of 

every operation in the datapath. Rather, this knowledge is 

intrinsic to the individual OPs, and is therefore distributed.  

 

A. Control Signals 

Each OP is triggered by an “enable” signal, and its 

completion is conveyed with a “done” signal. Self-propagation 

is achieved by wiring the done signal from a given OP to the 

enable signal of the successive OP. An initial enable pulse to 

the system starts the cascading enables. The changing 

execution stack and the locals stack flow alongside this 

cascading status. Both combinational and sequential operations 

adhere to this format. The overall architecture including the 

new control signals is explained in Fig 1 using an example of a 

greatest common divisor (GCD) algorithm. A simplified 

flowpath to compute the GCD requires three OPs: an equality 

detector (OPEq), a magnitude comparator (OPLt), and a 

subtraction OP (OPMinus). A path using multiplexers and 

branches connects these OPs.  The top of Fig 1 shows the GCD 

with the original flowpath including the state controller, and 

the bottom of Fig 1 shows the SP flowpath with cascading 

enables. 

Conditional branching was previously controlled using the 

main state controller. Two boolean results were received from 

the conditional OP to notify the controller which OP should be 

enabled next. In this new architecture, conditional OPs simply 

produce two done signals, representing two paths the flow 

could take. When the two paths converge again, a multiplexer  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is used to select the appropriate flow to propagate onward. A 

one-hot select line is used for the multiplexer, which is driven 

by the done control signal output by the last OP in the active 

path. This is demonstrated in Fig 2. 

Software loops, such as those generated by the while and for 

statements in Java, are very similar to conditional branches, the 

difference being that they contain an unconditional branch at 

the bottom of the statement. Unconditional branches are simply 

represented as connections between two OPs. If there is a 

conditional check within a loop there is a possibility that three 

paths will flow to a multiplexer: an initial entrance path, a loop 

condition path, and the conditional OP path.  

 

B. Memory 

Memory operations simply assume control of the memory 

when activated. Currently, since only one OP in a given 

 

 
Fig 1. Comparison of the original controller (top) and SP (bottom) flowpath 

architectures 

 

 
Fig 2. Conditional Branching in the SP Architecture 

 

 

  



 

datapath is active at any one time, no memory arbitration 

scheme is necessary. Every memory OP within a given 

datapath is multiplexed to the memory controller. If every 

memory OP were directly multiplexed into the memory 

controller, problems would occur with routing as the design 

increased in complexity. In the case of a method call, OPs are 

multiplexed within the datapath itself and a single set of 

memory control signals are routed to the datapath that calls it. 

The top method of the hierarchy is wired directly to the 

memory controller. Multiplexing within a single datapath 

occurs through a sub-multiplexing routine where operations 

are multiplexed into groups before the final multiplexing stage 

to the single output. Relative to a datapath, a sub-method call 

with memory appears as a normal OP with memory. In order 

to support multithreaded designs with parallel flowpaths, a 

memory arbiter is needed. 

III. RESULTS 

Several examples varying in difficulty were tested to verify 

functionality and performance relative to both the original 

flowpaths architecture and a microcontroller-based embedded 

system. Euclid’s greatest common divisor (GCD), a quicksort, 

the Sieve of Eratosthenes, a complex FFT, Linpack, and the 

Mandelbrot fractal were tested. The GCD is a small algorithm 

with relatively simple constructs, such as branching, 

subtracting, comparing, and method calls. The Sieve of 

Eratosthenes and quicksort both require the use of memory, 

with quicksort requiring the most. FFT, Linpack, and the 

Mandelbrot fractal use fixed-point arithmetic. 

The flowpaths produced by the compiler have been 

experimentally verified by simulation in Xilinx ISE version 

12.3. Since all of the algorithms were written in standard Java, 

it is easy to verify functionality. Additionally, since the process 

does not alter the Java language, the exact same source code is 

compiled on every platform. This adds to the relevancy of 

performance comparisons and it aids in debugging. 

Euclid’s GCD was compared in both architectures of the 

flowpath compiler and the jStamp j-80 [4], a custom 

architecture that natively executes Java bytecodes at 73.7 

MHz. The GCD of the values 12,365,400 and 906 was 

calculated. Table I displays the results of the implementation 

using a Xilinx Spartan 6 XC6SLX75. The new architecture 

showed a large decrease in the number of clock cycles 

necessary, along with a significant increase in the maximum 

execution frequency. In the original design, the algorithm 

required 112 slices, and the SP design only required 77 slices 

of the device.  
 

Method 
Data 

Bus 
Clock Cycles 

Time(ms) 

 @ Max 

Freq 

Max 

Freq 

(MHz) 

Energy 

(mW·ms) 

@Max  

Original 

Flowpath 
32 bit 95,648 0.637 150 148 

SP 

Flowpath 
32 bit 54,652 0.273 200 54 

jStamp 32 bit 2,690,000 36.5 73.7 6862 

Table I. Relative performance comparison of GCD 

The Sieve of Eratosthenes algorithm for finding all of the 

prime numbers less than 2048 was executed using several 

different methods to provide a relative performance 

comparison. The algorithm was compiled to a flowpath using 

both the original and SP architectures, and the jStamp. Results 

comparing the architectures are provided in Table II. Both 

flowpaths targeted a Xilinx Spartan6 XC6SLX75. The original 

flowpath generated hardware that requires 496 slices, 

occupying 4% of the chip. The SP flowpath, however, only 

requires 268 slices at 2% consumption. This space savings is 

expected as a result of the removal of the state controller.  
 

Method 
Data 

Bus 
Clock 

Cycles 

Time(ms) 

@ Max 

Freq 

Max 

Freq 

(MHz) 

Energy 

(mW·ms) 

@Max 

Original 

Flowpath 
16 bit 22,116 0.211 105 29 

SP 

Flowpath 
16 bit 16,023 0.1282 125 12 

jStamp 32 bit 943,000 12.8 73.7 2406 

Table II. Relative performance comparison of Sieve of Eratosthenes 
 

A comparison of the two compilers was also done for 

quicksort using an identical series of 4000 random data values. 

The algorithm used was an iterative version, since recursion is 

not yet supported in flowpaths. Both designs were 

implemented using the same Xilinx Spartan6 XC6SLX75. 

Implementation results comparing the architectures are 

provided in Table III.  

 

Method 
Data 

Bus 
Clock 

Cycles 

Time(ms) 

@ Max 

Freq 

Max 

Freq 

(MHz) 

Energy 

(mW·ms) 

@Max 

Original 

Flowpath 
16 bit 659,671 13.19 50 1279 

SP 

Flowpath 
16 bit 486,520 3.892 125 366 

jStamp 32 bit 37,520,000 509.1 73.7 95,711 

Table III. Relative performance comparison of QSort 
 

To demonstrate the quick design prototyping capabilities of a 

flowpath, a 1024-point complex FFT was created in Java. 

Implementing the same algorithm in hardware would take a 

considerable amount of time and expertise. Using flowpaths, a 

moderately efficient FFT implementation can be created for 

use in an embedded system. This was implemented targeting a 

Xilinx Spartan 6 XC6SLX75T FPGA. The generated hardware 

required 8,349 slices, utilizing 71% of the chip. The same Java 

algorithm was implemented on a jStamp embedded processor. 

The FFT utilized a 32-bit fixed-point notation for 

computations. Results are summarized in Table IV. In 

comparison to the jStamp, the flowpath FFT showed superior 

performance. Since the FFT algorithm can be effectively 

parallelized, the serial version generated by the compiler is not 

expected to achieve optimal results. 



 

Method 
Data 

Bus 
Clock 

Cycles 

Time(ms) 

@ Max 

Freq 

Max 

Freq 

(MHz) 

Energy 

(mW·ms) 

@Max 

SP 

Flowpath 
32 bit 268,891 3.841 70 714 

jStamp 32 bit 17,500,000 237.6 73.7 44,669 

Table IV. Relative performance comparison of 1024-point complex FFT 
 

 

The classic benchmarking algorithm, Linpack, which 

computes the solution to a system of linear equations, was 

generated using the flowpath compiler. Implementing the same 

hardware in custom VHDL would be considerably expensive 

in terms of time and expertise. This generated flowpath was 

implemented targeting a Xilinx Spartan 6 XC6SLX150T 

FPGA. The hardware required 15,632 slices, utilizing 67% of 

the chip. The flowpath was compiled using 32-bit fixed-point 

notation for the computations, and the results are shown in 

Table V. Times are given for the solution of a linear system of 

size 100x100. As shown with the FFT algorithm, Linpack 

showed an extreme performance increase in comparison to the 

jStamp equivalent. 

 

 

Method 
Data 

Bus 
Clock Cycles 

Time(ms) 

@ Max 

Freq 

Max 

Freq 

(MHz) 

Energy 

(mW·ms) 

@Max 

SP 

Flowpath 
32 bit 4,276,400 122.2 35 34,065 

jStamp 32 bit 2.064 x 108 2800.0 73.7 526,400 

Table V. Relative performance comparison of Linpack 
 

The Mandelbrot set is a fractal image produced by iterating a 

quadratic polynomial across points in the complex plane. A 

Mandelbrot calculation unit was generated using the flowpath 

compiler. This unit operates upon a point in the Mandelbrot set 

until the exit conditions for that particular point are reached. 

The generated flowpath was implemented targeting an Altera 

Cyclone II EP2C35F672C6 FPGA. The flowpath was 

compiled using a 32-bit fixed-point number system. This was 

profiled against both a custom VHDL component written by 

hand, and the same Java code running in a jStamp.  

The generated flowpath consumed 3217 logic elements (9% 

of the chip), while the custom VHDL component consumed 

725 logic elements (2% of the chip). Performance results for 

calculating a single point in the Mandelbrot set for 255 

iterations are summarized in Table VI.  

The flowpath version is on the same order-of-magnitude as 

the custom VHDL version, in terms of speed, power 

consumption and resource usage. Additionally, since the 

flowpath was generated directly from Java, the development 

time was substantially faster. Both hardware versions greatly 

exceeded the performance of the jStamp processor. 

 

 

 

Method 
Data 

Bus 
Clock 

Cycles 

Time(ms) 

@ Max 

Freq 

Max 

Freq 

(MHz) 

Energy 

(mW·ms) 

@Max 

SP 

Flowpath 
32 bit 6,893 0.0656 105 15.55 

Custom 

VHDL 
32 bit 1,276 0.0111 115 2.02 

jStamp 32 bit 199,000 2.7 73.7 319 

Table VI. Relative performance comparison of Mandelbrot calculation 

 

Ratiometric comparisons between original flowpaths and SP 

flowpaths were calculated and are shown in Table VII. 

Examples shown are GCD, QSort, and Sieve. Data was 

unavailable for other examples. 

 

Experiment Time Max Freq Energy 

GCD 0.45 1.3 0.36 

Sieve 0.61 1.19 0.41 

Qsort 0.29 2.5 0.29 

Table VII. Ratiometric comparison of SP flowpaths vs. original flowpaths 

IV. OPTIONS FOR FURTHER SPACE REDUCTION 

Occasionally, a hardware designer may approach size 

limitations with a specific design. Depending on how large the 

design is, several choices can be considered to work around 

such an issue. Choices may include: exploring optimization 

methods, inserting a soft-core processor, dynamic 

reconfiguration, or partitioning a device over multiple FPGAs. 

One space optimization is to remove repetitive OPs in a 

datapath. A series of similar OPs could also be considered 

redundant in terms of space utilization. Another optimization 

to save space would be to insert an elastic processor capable of 

computing the OPs needed, in their place. Elastic cores are 

also ideal for complex pieces of an algorithm that are executed 

relatively few times. Using SP flowpaths, a design could be 

easily partitioned by splitting the flowpath into sections and 

using the simple interface to every OP as a bus to an adjacent 

FPGA. 

V. DESIGN FLEXIBILITY 

Flowpaths have the capability to make use of custom hand-

crafted VHDL blocks for use into the flowpath. An interface 

can be created in Java to describe the custom VHDL 

component. The Java method would be empty and only defines 

the inputs and output of the block. The compiler will recognize 

this as a custom block and insert it into the generated flowpath. 

This can be used to define the interconnection to multiple 

custom VHDL blocks. This concept is further described in the 

paper [5]. 

 



 

VI. FUTURE WORK 

Future work includes defining a metric for determining and 

minimizing the critical delay path of the system. Improved 

optimization techniques for enhancing the speed and reducing 

the size of the flowpaths generated by the compiler are also 

being explored. These optimizations include hardware 

component reuse and further reduction in unnecessary clock 

cycles through optimization of the operations and memory 

usage. Furthermore, future work includes integrating CIL, 

another stack-based IR, to the compiler, allowing for a wide 

range of .NET languages to be compiled to hardware. 

VII. CONCLUSION 

This paper shows how standard stack-based programs, such 

as Java bytecodes, can be compiled directly to flowpaths 

without a centralized controller. A refined architecture was 

introduced here that demonstrates improved efficiency in the 

areas of execution speed, maximum clock frequency, power 

dissipation, and the amount of logic used. Using this 

methodology, not only is the performance increased, but also 

the development time is significantly decreased. 

Flowpaths can outperform microprocessors at lower clock 

frequencies and therefore consume less energy than 

microprocessors or microprocessor cores. Even in situations 

where the FPGA requires power on the same order of 

magnitude as a processor, the energy required to perform a 

function is significantly less since special-purpose processors, 

including flowpaths, greatly reduce the execution time and 

number of clock cycles required. Energy consumption is 

compared in the last column of each table in Section 3. On 

average, flowpaths running on FPGAs consumed over 50 times 

less energy than a Java microcontroller.  

The space reduction and performance increase of SP 

flowpaths makes generation of SPPs for complex algorithms 

such as FFT or Linpack practical to implement in an 

embedded hardware system. Highly complex algorithms 

implemented in flowpaths have shown to be superior to an 

identical algorithm executed on a jStamp embedded processor. 

Furthermore, designs can be created easily with minimal 

design time, and the resulting hardware is easily 

understandable and modifiable by a hardware designer. 
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