

 Abstract—The performance of software executed on a

microprocessor is adversely affected by the basic fetch-execute

cycle. A further performance penalty results from the load-

execute-store paradigm associated with the use of local variables

in most high-level languages. Implementing a software algorithm

directly in hardware such as on an FPGA can alleviate these

performance penalties. Such implementations are normally

developed in a hardware description language such as VHDL or

Verilog. Previous work has been completed to create a compiler

for converting high-level stack-based languages to VHDL for use

on an FPGA or ASIC. This allowed for special-purpose

processors to be generated efficiently from high-level algorithms

with minimal design time. Introduced in this paper is a significant

optimization to the original flowpaths – we have completely

eliminated the controller and modified all operations to control

themselves. These new self-propagating flowpaths execute faster

and are less resource intensive. Comparisons to previous

examples show that the new design exhibits, on average, a

decrease in execution time of 32%, operating frequencies of 1.6

times higher, and a 33% decrease in power consumption. These

flowpaths can be generated from languages with a stack-based

intermediate representation including Java, C++, C#, and VB.

Index Terms—Field Programmable Gate Arrays, Program

Compilers, Embedded Systems, Object-oriented Design.

I. INTRODUCTION

ver the past ten years, field-programmable gate arrays

(FPGAs) have become increasingly popular in the area of

embedded systems. Due to lower costs and an increase in the

resources available with lower-end models, FPGAs can be

used in a wide range of applications. FPGAs have shown to be

optimal for use in high-performance systems while reducing

power consumption.

A special-purpose processor (SPP) or custom digital circuit

implemented on an FPGA is an ideal replacement for a

microcontroller. Custom hardware such as SPPs can realize an

algorithm more efficiently than a general-purpose

microcontroller with load-execute-store overhead. However,

SPPs increase in size, requiring more logic for larger

algorithms, while a microcontroller can execute as large an

algorithm as the program memory can hold using a fixed

amount of logic. For others, a SPP on an FPGA can be used as

a coprocessor to a microcontroller to help speed up particular

functions or sub-procedures.

Manuscript received March 31, 2011.

Darrin M. Hanna, Bryant Jones, Lincoln Lorenz, and Mark Bowers are

with the School of Engineering and Computer Science at Oakland University

in Rochester, MI (dmhanna@oakland.edu).

Designing a SPP is much more difficult than writing

software in a high-level programming language to execute on a

microcontroller. In order to design a SPP for a particular

algorithm, a designer must learn how to develop hardware

using a hardware description language such as VHDL or

Verilog. Further, design of a SPP for a lengthy algorithm can

be time consuming and requires a skilled computer engineer to

do so efficiently.

One common idea to decrease development time is to use a

high-level language to develop hardware. Several techniques

have been introduced that use this concept. Techniques for

generating SPPs such as Handel-C, often require learning a

new or significantly altered language, and have the bottleneck

of often being register based as described in [1].

Using the method introduced in [1, 3] SPPs can be

generated from algorithms written in high-level stack-based

intermediate representations (IR). This has the advantage of

being generated from an unmodified high-level language. This

is also more efficient than previous methods that use registers

for each variable. The SPPs generated using this technique are

called flowpaths. An embedded system can be designed and

implemented rapidly using a high-level programming

language.

Our previous method generated flowpath SPPs with two

basic components, a datapath and a state controller. An

optimization of this architecture is to distribute the controller

into each low-level operation to allow for smaller, more

efficient designs that can operate at higher frequencies.

In this paper, an optimization of the flowpaths architecture

is introduced using a stateless self-propagating method that

results in improvements for both speed and chip utilization.

Outlined in Section 2 is the new stateless self-propagating

architecture. Section 3 shows results using several

benchmarking algorithms, comparing efficiency in an

embedded system. Sections 4 and 5 describe additional

benefits of flowpaths. The paper closes by providing

concluding remarks and future work.

II. SELF-PROPAGATING FLOWPATHS

Software programs written in a stack-based language can be

converted directly to circuits called flowpaths [3]. Stack-based

programming languages inherently minimize the use of local

variables. This is in contrast to other methods that have been

developed for converting register-based code into circuits by

converting each variable into a register and each assignment

and access into a sequential operation. Those methods suffer

from fan-out and routing issues and therefore operate at lower

clock rates [1]. Several software-programming languages

compile to an intermediate representation (IR) that is stack-

Generating Hardware from Java Using

Self-Propagating Flowpaths

Darrin M. Hanna, Bryant Jones, Lincoln Lorenz, and Mark Bowers

O

based. Examples include the stack-based Java bytecode which

is compiled from Java, and the Common Interface Language

(CIL) that languages compatible with the .NET framework

compile to, such as C++, C#, VB, and J#. Any of these

languages could be represented similarly in hardware. The

flowpaths compiler described here currently uses Java. The

Java Virtual Machine (JVM) is a stack machine that runs on a

microprocessor and executes Java bytecodes. Therefore,

instead of executing bytecodes on a JVM, flowpaths

completely eliminate the JVM by creating custom hardware

that implements the program. Java bytecodes are translated to

hardware operations, also known as OPs. A function-call

within a Java program translates to a datapath which contains a

series of connected OPs. Since flowpaths is IR-based, the

generated hardware is represented in a human-readable way,

unlike similar tools which often generate hardware that is

obscure and difficult to modify.

Self-propagating (SP) flowpaths uses a system of cascading

enables to avoid the need for an overall state controller. The

nature of the hardware generated is such that algorithms or

parts of algorithms execute in sequence where one operation

after another is active. In this scheme, no overall controller is

necessary; no single, overarching entity requires knowledge of

every operation in the datapath. Rather, this knowledge is

intrinsic to the individual OPs, and is therefore distributed.

A. Control Signals

Each OP is triggered by an “enable” signal, and its

completion is conveyed with a “done” signal. Self-propagation

is achieved by wiring the done signal from a given OP to the

enable signal of the successive OP. An initial enable pulse to

the system starts the cascading enables. The changing

execution stack and the locals stack flow alongside this

cascading status. Both combinational and sequential operations

adhere to this format. The overall architecture including the

new control signals is explained in Fig 1 using an example of a

greatest common divisor (GCD) algorithm. A simplified

flowpath to compute the GCD requires three OPs: an equality

detector (OPEq), a magnitude comparator (OPLt), and a

subtraction OP (OPMinus). A path using multiplexers and

branches connects these OPs. The top of Fig 1 shows the GCD

with the original flowpath including the state controller, and

the bottom of Fig 1 shows the SP flowpath with cascading

enables.

Conditional branching was previously controlled using the

main state controller. Two boolean results were received from

the conditional OP to notify the controller which OP should be

enabled next. In this new architecture, conditional OPs simply

produce two done signals, representing two paths the flow

could take. When the two paths converge again, a multiplexer

is used to select the appropriate flow to propagate onward. A

one-hot select line is used for the multiplexer, which is driven

by the done control signal output by the last OP in the active

path. This is demonstrated in Fig 2.

Software loops, such as those generated by the while and for

statements in Java, are very similar to conditional branches, the

difference being that they contain an unconditional branch at

the bottom of the statement. Unconditional branches are simply

represented as connections between two OPs. If there is a

conditional check within a loop there is a possibility that three

paths will flow to a multiplexer: an initial entrance path, a loop

condition path, and the conditional OP path.

B. Memory

Memory operations simply assume control of the memory

when activated. Currently, since only one OP in a given

Fig 1. Comparison of the original controller (top) and SP (bottom) flowpath

architectures

Fig 2. Conditional Branching in the SP Architecture

datapath is active at any one time, no memory arbitration

scheme is necessary. Every memory OP within a given

datapath is multiplexed to the memory controller. If every

memory OP were directly multiplexed into the memory

controller, problems would occur with routing as the design

increased in complexity. In the case of a method call, OPs are

multiplexed within the datapath itself and a single set of

memory control signals are routed to the datapath that calls it.

The top method of the hierarchy is wired directly to the

memory controller. Multiplexing within a single datapath

occurs through a sub-multiplexing routine where operations

are multiplexed into groups before the final multiplexing stage

to the single output. Relative to a datapath, a sub-method call

with memory appears as a normal OP with memory. In order

to support multithreaded designs with parallel flowpaths, a

memory arbiter is needed.

III. RESULTS

Several examples varying in difficulty were tested to verify

functionality and performance relative to both the original

flowpaths architecture and a microcontroller-based embedded

system. Euclid’s greatest common divisor (GCD), a quicksort,

the Sieve of Eratosthenes, a complex FFT, Linpack, and the

Mandelbrot fractal were tested. The GCD is a small algorithm

with relatively simple constructs, such as branching,

subtracting, comparing, and method calls. The Sieve of

Eratosthenes and quicksort both require the use of memory,

with quicksort requiring the most. FFT, Linpack, and the

Mandelbrot fractal use fixed-point arithmetic.

The flowpaths produced by the compiler have been

experimentally verified by simulation in Xilinx ISE version

12.3. Since all of the algorithms were written in standard Java,

it is easy to verify functionality. Additionally, since the process

does not alter the Java language, the exact same source code is

compiled on every platform. This adds to the relevancy of

performance comparisons and it aids in debugging.

Euclid’s GCD was compared in both architectures of the

flowpath compiler and the jStamp j-80 [4], a custom

architecture that natively executes Java bytecodes at 73.7

MHz. The GCD of the values 12,365,400 and 906 was

calculated. Table I displays the results of the implementation

using a Xilinx Spartan 6 XC6SLX75. The new architecture

showed a large decrease in the number of clock cycles

necessary, along with a significant increase in the maximum

execution frequency. In the original design, the algorithm

required 112 slices, and the SP design only required 77 slices

of the device.

Method
Data

Bus
Clock Cycles

Time(ms)

 @ Max

Freq

Max

Freq

(MHz)

Energy

(mW·ms)

@Max

Original

Flowpath
32 bit 95,648 0.637 150 148

SP

Flowpath
32 bit 54,652 0.273 200 54

jStamp 32 bit 2,690,000 36.5 73.7 6862

Table I. Relative performance comparison of GCD

The Sieve of Eratosthenes algorithm for finding all of the

prime numbers less than 2048 was executed using several

different methods to provide a relative performance

comparison. The algorithm was compiled to a flowpath using

both the original and SP architectures, and the jStamp. Results

comparing the architectures are provided in Table II. Both

flowpaths targeted a Xilinx Spartan6 XC6SLX75. The original

flowpath generated hardware that requires 496 slices,

occupying 4% of the chip. The SP flowpath, however, only

requires 268 slices at 2% consumption. This space savings is

expected as a result of the removal of the state controller.

Method
Data

Bus
Clock

Cycles

Time(ms)

@ Max

Freq

Max

Freq

(MHz)

Energy

(mW·ms)

@Max

Original

Flowpath
16 bit 22,116 0.211 105 29

SP

Flowpath
16 bit 16,023 0.1282 125 12

jStamp 32 bit 943,000 12.8 73.7 2406

Table II. Relative performance comparison of Sieve of Eratosthenes

A comparison of the two compilers was also done for

quicksort using an identical series of 4000 random data values.

The algorithm used was an iterative version, since recursion is

not yet supported in flowpaths. Both designs were

implemented using the same Xilinx Spartan6 XC6SLX75.

Implementation results comparing the architectures are

provided in Table III.

Method
Data

Bus
Clock

Cycles

Time(ms)

@ Max

Freq

Max

Freq

(MHz)

Energy

(mW·ms)

@Max

Original

Flowpath
16 bit 659,671 13.19 50 1279

SP

Flowpath
16 bit 486,520 3.892 125 366

jStamp 32 bit 37,520,000 509.1 73.7 95,711

Table III. Relative performance comparison of QSort

To demonstrate the quick design prototyping capabilities of a

flowpath, a 1024-point complex FFT was created in Java.

Implementing the same algorithm in hardware would take a

considerable amount of time and expertise. Using flowpaths, a

moderately efficient FFT implementation can be created for

use in an embedded system. This was implemented targeting a

Xilinx Spartan 6 XC6SLX75T FPGA. The generated hardware

required 8,349 slices, utilizing 71% of the chip. The same Java

algorithm was implemented on a jStamp embedded processor.

The FFT utilized a 32-bit fixed-point notation for

computations. Results are summarized in Table IV. In

comparison to the jStamp, the flowpath FFT showed superior

performance. Since the FFT algorithm can be effectively

parallelized, the serial version generated by the compiler is not

expected to achieve optimal results.

Method
Data

Bus
Clock

Cycles

Time(ms)

@ Max

Freq

Max

Freq

(MHz)

Energy

(mW·ms)

@Max

SP

Flowpath
32 bit 268,891 3.841 70 714

jStamp 32 bit 17,500,000 237.6 73.7 44,669

Table IV. Relative performance comparison of 1024-point complex FFT

The classic benchmarking algorithm, Linpack, which

computes the solution to a system of linear equations, was

generated using the flowpath compiler. Implementing the same

hardware in custom VHDL would be considerably expensive

in terms of time and expertise. This generated flowpath was

implemented targeting a Xilinx Spartan 6 XC6SLX150T

FPGA. The hardware required 15,632 slices, utilizing 67% of

the chip. The flowpath was compiled using 32-bit fixed-point

notation for the computations, and the results are shown in

Table V. Times are given for the solution of a linear system of

size 100x100. As shown with the FFT algorithm, Linpack

showed an extreme performance increase in comparison to the

jStamp equivalent.

Method
Data

Bus
Clock Cycles

Time(ms)

@ Max

Freq

Max

Freq

(MHz)

Energy

(mW·ms)

@Max

SP

Flowpath
32 bit 4,276,400 122.2 35 34,065

jStamp 32 bit 2.064 x 108 2800.0 73.7 526,400

Table V. Relative performance comparison of Linpack

The Mandelbrot set is a fractal image produced by iterating a

quadratic polynomial across points in the complex plane. A

Mandelbrot calculation unit was generated using the flowpath

compiler. This unit operates upon a point in the Mandelbrot set

until the exit conditions for that particular point are reached.

The generated flowpath was implemented targeting an Altera

Cyclone II EP2C35F672C6 FPGA. The flowpath was

compiled using a 32-bit fixed-point number system. This was

profiled against both a custom VHDL component written by

hand, and the same Java code running in a jStamp.

The generated flowpath consumed 3217 logic elements (9%

of the chip), while the custom VHDL component consumed

725 logic elements (2% of the chip). Performance results for

calculating a single point in the Mandelbrot set for 255

iterations are summarized in Table VI.

The flowpath version is on the same order-of-magnitude as

the custom VHDL version, in terms of speed, power

consumption and resource usage. Additionally, since the

flowpath was generated directly from Java, the development

time was substantially faster. Both hardware versions greatly

exceeded the performance of the jStamp processor.

Method
Data

Bus
Clock

Cycles

Time(ms)

@ Max

Freq

Max

Freq

(MHz)

Energy

(mW·ms)

@Max

SP

Flowpath
32 bit 6,893 0.0656 105 15.55

Custom

VHDL
32 bit 1,276 0.0111 115 2.02

jStamp 32 bit 199,000 2.7 73.7 319

Table VI. Relative performance comparison of Mandelbrot calculation

Ratiometric comparisons between original flowpaths and SP

flowpaths were calculated and are shown in Table VII.

Examples shown are GCD, QSort, and Sieve. Data was

unavailable for other examples.

Experiment Time Max Freq Energy

GCD 0.45 1.3 0.36

Sieve 0.61 1.19 0.41

Qsort 0.29 2.5 0.29

Table VII. Ratiometric comparison of SP flowpaths vs. original flowpaths

IV. OPTIONS FOR FURTHER SPACE REDUCTION

Occasionally, a hardware designer may approach size

limitations with a specific design. Depending on how large the

design is, several choices can be considered to work around

such an issue. Choices may include: exploring optimization

methods, inserting a soft-core processor, dynamic

reconfiguration, or partitioning a device over multiple FPGAs.

One space optimization is to remove repetitive OPs in a

datapath. A series of similar OPs could also be considered

redundant in terms of space utilization. Another optimization

to save space would be to insert an elastic processor capable of

computing the OPs needed, in their place. Elastic cores are

also ideal for complex pieces of an algorithm that are executed

relatively few times. Using SP flowpaths, a design could be

easily partitioned by splitting the flowpath into sections and

using the simple interface to every OP as a bus to an adjacent

FPGA.

V. DESIGN FLEXIBILITY

Flowpaths have the capability to make use of custom hand-

crafted VHDL blocks for use into the flowpath. An interface

can be created in Java to describe the custom VHDL

component. The Java method would be empty and only defines

the inputs and output of the block. The compiler will recognize

this as a custom block and insert it into the generated flowpath.

This can be used to define the interconnection to multiple

custom VHDL blocks. This concept is further described in the

paper [5].

VI. FUTURE WORK

Future work includes defining a metric for determining and

minimizing the critical delay path of the system. Improved

optimization techniques for enhancing the speed and reducing

the size of the flowpaths generated by the compiler are also

being explored. These optimizations include hardware

component reuse and further reduction in unnecessary clock

cycles through optimization of the operations and memory

usage. Furthermore, future work includes integrating CIL,

another stack-based IR, to the compiler, allowing for a wide

range of .NET languages to be compiled to hardware.

VII. CONCLUSION

This paper shows how standard stack-based programs, such

as Java bytecodes, can be compiled directly to flowpaths

without a centralized controller. A refined architecture was

introduced here that demonstrates improved efficiency in the

areas of execution speed, maximum clock frequency, power

dissipation, and the amount of logic used. Using this

methodology, not only is the performance increased, but also

the development time is significantly decreased.

Flowpaths can outperform microprocessors at lower clock

frequencies and therefore consume less energy than

microprocessors or microprocessor cores. Even in situations

where the FPGA requires power on the same order of

magnitude as a processor, the energy required to perform a

function is significantly less since special-purpose processors,

including flowpaths, greatly reduce the execution time and

number of clock cycles required. Energy consumption is

compared in the last column of each table in Section 3. On

average, flowpaths running on FPGAs consumed over 50 times

less energy than a Java microcontroller.

The space reduction and performance increase of SP

flowpaths makes generation of SPPs for complex algorithms

such as FFT or Linpack practical to implement in an

embedded hardware system. Highly complex algorithms

implemented in flowpaths have shown to be superior to an

identical algorithm executed on a jStamp embedded processor.

Furthermore, designs can be created easily with minimal

design time, and the resulting hardware is easily

understandable and modifiable by a hardware designer.

REFERENCES

1. D. M. Hanna and R. E. Haskell, “Flowpaths: Compiling Stack-Based IR

to Hardware,” Microprocessors and Microsystems, vol. 30, pp. 125 -

136, 2006.

2. D. M. Hanna and M. Duchene, "Executing Large Algorithms on Low-

Capacity FPGAs using Algorithm Partitioning and Runtime

Reconfiguration," Journal of Microprocessors and Microsystems, vol

31/5 pp 302-312, August 1, 2007.

3. D. M. Hanna, M. Duchene, L. Kennedy, and B. Carpenter, "A Compiler

to Generate Hardware from Java Byte Codes for High Performance, Low

Energy Embedded Systems," The 2007 International Conference on

Engineering of Reconfigurable Systems and Algorithms, Las Vegas,

NV, June 25 - 28, 2007.

4. Systronix, “JStamp: Real-time Native Java Module,” 2003.

5. D. M. Hanna, B. Jones, L. Lorenz, and M. Bowers, “Flexible Embedded

System Design Using Flowpaths,” Submitted to the International

Conference on Embedded Systems and Applications, 2011.

